Assignment 7 Solution

Ex1:

$$
\begin{aligned}
& f(1)=\frac{1}{2}=\frac{2^{1}-1}{2^{1}} \\
& f(2)=\frac{3}{4}=\frac{2^{2}-1}{2^{2}} \\
& f(3)=\frac{7}{8}=\frac{2^{3}-1}{2^{3}}
\end{aligned}
$$

Conjecture:

$$
f(n)=\frac{2^{n}-1}{2^{n}}
$$

Proof:
Assume true for n , prove it is true for $\mathrm{n}+1$

$$
\begin{aligned}
& f(n+1)=f(n)+\frac{1}{2^{n+1}}\left[?=\frac{2^{n+1}-1}{2^{n+1}}\right] \\
& \begin{aligned}
f(n+1) & =\frac{2^{n}-1}{2^{n}}+\frac{1}{2^{n+1}} \\
& =\frac{2 *\left(2^{n}-1\right)+1}{2^{n+1}} \\
& =\frac{2^{n+1}-1}{2^{n+1}}
\end{aligned}
\end{aligned}
$$

Proved!

Ex2:

RTP: 6 divides $n^{3}-n$ whenever n is a non-negative integer

- try for $\mathrm{n}=0$, and $\mathrm{n}=1, n^{3}-n=0$, which can be divided by $6[0=6 \mathrm{k}$, for \mathbf{k} belongs to $\mathbf{Z}, \mathrm{k}=0$]
- try for $\mathrm{n}=2$, and $\mathrm{n}=1, n^{3}-n=8-2=6$, which can be divided by 6 also [$6=6 \mathrm{k}$, for \mathbf{k} belongs to $\mathbf{Z}, \mathrm{k}=1$]
$n^{3}-n=n\left(n^{2}-1\right)=(n-1) * n *(n+1)$
Now,
- if n is even, then $\mathrm{n}=2 \mathrm{k}$ for some \mathbf{k} belongs to \mathbf{Z}
- if n is odd, then $\mathrm{n}=2 \mathrm{k}+1$, then $\mathrm{n}-1=2 \mathrm{k}$, for some \mathbf{k} belongs to \mathbf{Z}
- ==>, whether \mathbf{n} is odd or even, $(n-1) * n *(n+1)$ is divisible by 2 , i.e: $(n-1) * n *(n+1)=2 j$ for some \mathbf{j} belongs to \mathbf{Z}
- if n is divisible by 3 , then $\mathrm{n}=3 \mathrm{~m}$ for some \mathbf{m} belongs to \mathbf{Z}
- else if n is not divisible by 3 , then $n=3 m+1$, or $n=3 m+2$ for some \mathbf{m} belongs to \mathbf{Z}
- if $n=3 m+1$, then $n-1=3 m$, then $n-1$ is divisible by 3
- if $\mathrm{n}=3 \mathrm{~m}+2$, then $\mathrm{n}+1=3 \mathrm{~m}+3=3(\mathrm{~m}+1)$, then $\mathrm{n}+1$ is divisible by 3
- ==> whether \mathbf{n} is divisible by $\mathbf{3}$ or not, $(n-1) * n *(n+1)$ is divisible by 3, i.e : $(n-1) * n *(n+1)=3 i$ for some \mathbf{i} belongs to \mathbf{Z}
- then $(n-1) * n *(n+1)$ is always divisible by 2 and 3 , then
- $n^{3}-n=(n-1) * n *(n+1)=2 * 3 * p=6 p$, for some \mathbf{p} belongs to \mathbf{Z}

Then $n^{3}-n$ is always divisible by 6

Ex3:

The problem is that it wasn't verified on a base case.
For $\mathrm{n}=1, \sum_{i=1}^{1} i=1$,
but according to the given formula, $\sum_{i=1}^{1} i=\frac{\left(1+\frac{1}{2}\right)^{2}}{2}=1.125$, so it fails on base cases.

Ex4:

Base Case: $\mathrm{n}=1, \mathrm{~m}>1, \mathrm{f}:\{1,2 \ldots \mathrm{~m}\} \rightarrow\{1\}$, then there exists more than one value in the domain that maps to 1 , then f is not $1: 1$ by definition

Inductive Step:

Assume for all $\mathrm{n}<\mathrm{m}, \mathrm{f}:\{1,2 \ldots \mathrm{~m}\} \rightarrow\{1,2, \ldots \mathrm{n}\}$, then f is not $1: 1$
Show that it's still holds for $n+1<m$, i.e: $f:\{1,2 \ldots m\} \rightarrow\{1,2, \ldots n+1\}$ is also not 1:1

Case 1: if no value in domain maps to $n+1$, then the range can be shrunk to $\{1$, $2 \ldots \mathrm{n}\}$, then f is not $\mathbf{1 : 1}$ from inductive step

Case 2: if more than 1 value in domain maps to $n+1$, then f is not $\mathbf{1 : 1}$ by def
Case 3: exactly 1 value (k) from domain maps to $n+1$, then we can remove k from domain and $n+1$ from range [and replace k by m, without affecting the function], to have f: $\{1,2 \ldots \mathrm{~m}-1\} \rightarrow\{1,2 \ldots \mathrm{n}\}$, i.e: f: $\left\{1,2 \ldots \mathrm{~m}^{\prime}\right\} \rightarrow\{1,2 \ldots \mathrm{n}\}$, and $m-1>\mathrm{n}$ since $m>n+1$, then f is not $1: 1$ by inductive hypothesis

Then in all cases f is not $1: 1$ when $n<m$

Ex5:

a) By using the 4 -cent stamps, we can have $4,8,12,16,20,24 \ldots$

Starting with a 7 , and by adding 4 , we can have $7,11,15,19,23 \ldots$
Starting with 27 s , we can have $14,18,22 \ldots$

By starting with 3 7s, we can have 21, 25, 29...
Since we had 4 numbers in a row, we can know the numbers that can be formed.
We have $18,19,20$ and 21
\Rightarrow For $\mathrm{n} \geq 18$, we can right any number by using only 4 s and 7 s and to prove that we use induction and strong induction in part b) and c)
\Rightarrow The numbers that can be formed are $4,7,8,11,12,14,15,16$ and any $\mathbf{n} \geq$ 18
b) RTP: For all $k>=18, k=4 a+8 b$ for $a, b>=0$
$18=2(7)+4$ [basis step]

Assume it's true for k , prove its true for $\mathrm{k}+1$
Case 1: if k has one of more $7 \mathrm{~s}(\mathrm{~b}>0)$, then $\mathrm{b}-1>0$,
$4(a+2)+7(b-1)=4 a+7 b+1=k+1$
Case 2: if k has no $7 \mathrm{~s}(\mathrm{~b}=0, \mathrm{k}=4 \mathrm{a})$, then $\mathrm{a}>=5$, since $\mathrm{k}>=18$, and $18=4 \mathrm{a}$, then $a>=4.5$, but a is integer, then $\mathrm{a}>=5$
Then $a-5>=0$, then $4(a-5)+7(3)=4 a+1=k+1$
Then in both cases we can move from build $\mathrm{k}+1$ from stamps of 4 and 7 if $\mathrm{k}>=18$, by induction
c) RTP: we can right any number above 18 by only using 4 s and 7 s

Let $P(n)$ be the proposition that postage of n cents can be formed using 4-cent and 7-cent stamps

- $\quad \mathrm{P}(18)$ uses 27 s and 14
- $P(19)$ uses 17 and 3 4s [basis]
- P(20) uses 54 s [basis]
- $P(21)$ uses 37 s [basis]

Suppose $P(j)$ holds for $18 \leq j \leq k$ where $k \geq 21$ [inductive step] [hypothesis] RTP: $\mathrm{P}(\mathrm{k}+1)$ holds
$k \geq 21=>k-3 \geq 18$
\Rightarrow We can form $\mathrm{k}-3$ by only using 7 s and 4 s
\Rightarrow By adding only 4 , we form $\mathrm{k}+1$ by only using 7 s and 4 s
In the mathematical induction, we supposed for a particular k that the hypothesis works, while in the strong induction we supposed that for all the values between 18 and k the hypothesis works

Ex6:

Base Case: $1=2^{0}, 3=2^{0}+2^{1}$
RTP: Any integer can be written as sum of distinct powers of 2

Inductive step:

Assume that for all $k \leq n, k=2^{b_{0}}+2^{b_{1}}+\cdots+2^{b_{m-1}}+2^{b_{m}}$, such that all $b_{i} s$ are distinct values

Show that $\mathrm{k}+1$ can also be written as a sum of distinct powers of 2
Case 1: if k is even, then there is no $b_{i}=0$, since 2^{x} is even for all $x>0$, and sum of even numbers is even, so k can have 2^{0} in its sum... and $k+2^{0}=k+1$, then $\mathbf{k + 1}$ can be written as sum of distinct powers of 2

Case 2: if k is odd, then $\mathrm{k}+1$ is even, then $(\mathrm{k}+1) / 2$ can be written as sum of distinct powers of 2 (By Strong Induction Hypothesis),
then $\frac{\mathrm{k}+1}{2}=2^{b_{0}}+2^{b_{1}}+\cdots+2^{b_{m-1}}+2^{b_{m}}$ where the powers of 2 are distinct then $(\mathrm{k}+1)=2 *\left(2^{b_{0}}+2^{b_{1}}+\cdots+2^{b_{m-1}}+2^{b_{m}}\right)=2^{1+b_{0}}+2^{1+b_{1}}+\cdots+$ $2^{1+b_{m-1}}+2^{1+b_{m}}$, then the powers of 2 are still distinct then $\mathbf{k + 1}$ can be written as sum of distinct powers of 2
in the two cases, $k+1$ can be written as sum of distinct powers of 2

Ex7:

RTP: $2 n^{2}-10 n+4 \geq 0$ whenever $n \geq 5$
Base case: $\mathrm{n}=5,2 n^{2}-10 n+4=4 \geq 0$, so true
Assume it holds for n , prove it true for $\mathrm{n}+1$
$f(n+1)=2(n+1)^{2}-10(n+1)+4$
$=2\left(n^{2}+2 n+1\right)-10 n-10+4$
$=2 n^{2}+4 n+2-10 n-10+4$
$=f(n)+4 n-8$
now, is $f(n)+4 n-8 \geq 0$ for $n \geq 5$?
$n \geq 5$ then $4 n \geq 20$ then $4 n-8 \geq 12 \geq 0$

$$
\text { So: } f(n) \geq 0 \text { and } 4 n-8 \geq 0 \text { for } n \geq 5 \text {, then } f(n+1) \geq 0 \text { for } n \geq 5
$$

then $n=5,2 n^{2}-10 n+4 \geq 0$, for $n \geq 5$ by induction

Ex8:

RTP: $\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) \cup B=(A 1 \cup B) \cap(A 2 \cup B) \cap \cdots \cap\left(A_{n} \cup B\right)$
Base Case: For $n=1, A_{1} \cup B=A_{1} \cup B$
$P(k)=\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right) \cup B$,
$Q(k)=(A 1 \cup B) \cap(A 2 \cup B) \cap \cdots \cap\left(A_{k} \cup B\right)$,

Inductive Step:

Assume $\mathrm{P}(\mathrm{k})=\mathrm{Q}(\mathrm{k})$, show $\mathrm{P}(\mathrm{k}+1)=\mathrm{Q}(\mathrm{k}+1)$

$$
\begin{aligned}
Q(k+1) & =(A 1 \cup B) \cap(A 2 \cup B) \cap \cdots \cap\left(A_{k} \cup B\right) \cap\left(A_{k+1} \cup B\right) \\
& =Q(k) \cap\left(A_{k+1} \cup B\right) \\
& =P(k) \cap\left(A_{k+1} \cup B\right) \\
& =P(k) \cap\left(A_{k+1} \cup B\right) \\
& =\left(\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right) \cup B\right) \cap\left(A_{k+1} \cup B\right) \\
& =\left((A 1 \cup B) \cap(A 2 \cup B) \cap \cdots \cap\left(A_{k} \cup B\right)\right) \cap\left(A_{k+1} \cup B\right) \\
& =(A 1 \cup B) \cap(A 2 \cup B) \cap \cdots \cap\left(A_{k} \cup B\right) \cap\left(A_{k+1} \cup B\right)
\end{aligned}
$$

Proved

Ex9:

$n^{3}+(n+1)^{3}+(n+2)^{3}=3\left(n^{3}+3 n^{2}+5 n+3\right)$
$(n+1)^{3}+(n+2)^{3}+(n+3)^{3}=3\left(n^{3}+6 n^{2}+14 n+12\right)$

